
SECUR Y
IN MIRTH
CONNECT

 Best Practices
 and Vulnerabilities
of Mirth Connect

Author:

Jeff Campbell
Technical Consultant,
Galen Healthcare Solutions

Date:

May 15, 2015

galenhealthcare.com
© 2015. All rights reserved.

Table of Contents

Overview

What is Mirth Connect?

Securing Mirth Connect Interface Engine

 Certificates for Mirth Connect Server

Securing the Mirth Connect Frontend

Users and Permissions

Enforcing Security and Policies for Passwords

Auditing Mirth Connect Users

Securing Interfaces in Mirth Connect

SSL Manager (Connectors)

SSL Tunnels

 Encrypting Message Content Sent from Mirth

Conclusion

3

3

3

4

5

5

5

6

6

7

7

8

8

2

Best Practices and Vulnerabilities of Mirth Connect

Overview
Whether trying to comply with HIPAA, SOX, FIPS or
any other federal regulation regarding the robustness
and integrity of data, security is a paramount concern
when it comes to an interface engine that too often has
been underemphasized. When talking about securing
an interface engine, most organizations are aware of
and take steps to ensure the data entering and exiting
the application is secured in some form, usually a VPN
as many legacy systems are only capable of traffic over
TCP\IP or directly to file. This is often seen as enough as
these applications often reside on internal servers where
organizations feel they are safe and protected by their own
or contracted IT staff and it is only the data leaving the
practice that must be secured.

This is not enough in most cases however as there are a
myriad of places where sensitive data is left unsecured on
the appliance, creating the possibility where a malicious
person could breach the integrity of the interface engine.
What about the storage of the messages itself as they
pass through the application? How is the application
for the interface engine accessed and how granular are
its permissions? Is there the possibility of intercepting
traffic as it leaves the server via a packet sniffer? Many of
these areas of concern may have options in the interface
engine to be secured, either through global settings on
the application or the interface handling the traffic itself,
but enabling those options may very well have their own
consequences which must be taken into consideration.

As an example of hardening an interface engine and
covering many different points of failure for the integrity
and security of its messages, I will be highlighting security
options for the Mirth Connect interface engine (v3.1.1) in
order to promote Healthcare IT best security practices.

What is Mirth Connect?
Mirth is a cross-platform interface engine that enables
bi-directional sending of messages over numerous
protocols including TCP/MLLP, directly to database
(MySQL, PostgreSQL, Oracle, Microsoft SQL Server, ODBC),
file, JMS, FTP/SFTP, HTTP, SOAP, or SMTP.

Securing the Mirth Connect
Interface Engine
By way of default installation, there are several areas that
are left extremely vulnerable and/or encryption is left either
at a lower strength than recommended or disabled entirely.
Many of these areas can be configured or added to the
mirth.properties file found at the installation path $Mirth/
conf/mirth.properties for the Mirth installation. However
for most default installations these are not added or
configured, allowing for potential vulnerabilities to
be left exposed.

For example, the Mirth Connect server service itself
connects to a database through the use of connection
settings held in the mirth.properties file. From a default
installation, even for Mirth-installed appliances, these
are often stored in an unencrypted plaintext form,
allowing for any and all with access to that file to view
potential admin passwords and usernames to the Mirth
database. This could potentially expose other databases
on the same server as the account the Mirth Connect
service is configured to use to may also have access
to other databases.

3

Best Practices and Vulnerabilities of Mirth Connect

Figure 1.1: (Top) Database connections settings in the Mirth
Connect Server Manager and (bottom) how they are stored in
plaintext on the server.

To correct this vulnerability, an additional encryption
setting can be enabled in the mirth.properties file that
will prompt the mirth service after a restart to rewrite all
plaintext passwords from then on to an encrypted, non-
human readable format.

Figure 1.3: Mirth.properties file after encryption settings have been set.
The database.password property is now properly encrypted.

Other Mirth security settings (such as specific
cryptographic algorithms, key length, and password
controls such as minimum/maximum length, number of
special characters, numbers, expiration, etc…) must be
enabled or configured from the local mirth.properties file.
All of those settings by default are left to the minimum
allowable values, which in most cases would not meet most
organizations security policies.

Certificates for Mirth Connect Server
It is important for connecting agent, whether they be
another interface server or remote application, to be able to
verify the integrity of the Mirth server by way of certificate.
Depending on your network configuration, this can either
be enabled on the appliance itself to present its own
certificate or may be enabled on an intermediary device
such as a load balancer. If the certificate is configured
on the load balancer, with traffic passing back after
presentation, configuring it on the Mirth server is only
applicable for persons connecting to it internally
(by appliance page or otherwise).

If you do need to configure a third party certificate on
the Mirth appliance, this can be done from the appliance
home page by going to Systems-> Certificates in the menu
bar, generating the Certificate Signing Request, and then
uploading it to the certificate authority (CA) of your choice.

Figure 1.2: After setting the encryption property shown here to 1, all
password fields will be encrypted.

4

Best Practices and Vulnerabilities of Mirth Connect

Once the CA has authorized the certificate and you’ve
purchased the private/public SSL cert, this can be
uploaded into the Mirth appliance configuration on the
same certificates screen as the CSR was generated.

Optionally, the locally-signed Mirth appliance CA could
be installed on agents that needed to connect so it would
trust the self-signed cert. However, I would advise this
only for connecting locally (for those persons needing to
configure and manage the appliance) rather than external
organizations as that will likely not pass muster for integrity.

Securing the Mirth Connect
Frontend
Users and Permissions
One of the substandard features of Mirth lies in the lack
of granularity of permissions for users of the application.
When configuring users through a Mirth Appliance,
you have the option of provisioning users as a Control
Panel User or a Mirth Connect User or both. Permissions
administration is limited to those roles; no more
permissions beyond that can be set.

A Control Panel user can log into the appliance home
page where they can view the current resource statistics,
download upgrades, restart services, and otherwise
configure the physical or virtual appliance for Mirth itself.
A Control Panel user cannot log into Mirth Connect, but
they can however access areas of the appliance where
they can affect the running operations of the appliance.
This role would likely be perfect for an IT staff member
whom is likely responsible for ensuring the uptime of
the appliance, but not for the interfaces running across
it. Depending on your interface setup however, any
configuration or restart of services might require close
coordination with someone who can directly interact with
Channels using the Mirth Connect frontend itself, which
leads to Mirth Connect users.

A Mirth Connect user can log into the Mirth Connect
application where they can create, edit, view, start, stop,
deploy, and undeploy channels (interfaces).They can view
the logs of messages coming across each channel and
remove or reprocess them. There is no way to assign roles
or permissions for a Mirth Connect user beyond assigning
a user login, so it is extremely important to ensure that if
there is someone who needs read-only access (such as
only needing to view or troubleshoot messages) that they
are careful about not modifying or changing settings for the
interface engine itself or any of the channels as they could
inadvertently break functionality of the engine or Channels.

Enforcing Security Policies for Passwords
One of the most common security policies an organization
has to enforce surround the passwords used to gain
access to sensitive systems. Mirth is fully configurable to
enforce these policies by altering the password related
properties found in the mirth.properties file. There we
can set restrictions on the contents of the password such
as a minimum and maximum length, number of special
characters and/or numbers, expiration of the password
before requiring it to change, number of retries before
lockout, etc… Once these properties have changed, it will
require a restart of the Mirth Connect service in order for
them to take effect.

Figure 2.1: Password-related configuration settings in the mirth.
properties file.

5

Best Practices and Vulnerabilities of Mirth Connect

Auditing Mirth Connect Users
In the event of an audit or security inspection, it may be
required to validate that user interactions through the Mirth
Connect application did not cause a breach. It is possible
through the Events view to filter through Mirth Connect
user interactions with the interface engine by several
different relevant fields.

For example, to ensure that the message content stored
by Mirth is only written in an encrypted manner to the
database, you must check the box on the Channel’s
summary page for “Encrypt Message Content as seen
below. This has the double-edged implication of not being
able to search free text through the message itself, but
most fields you would be interested to troubleshoot on
can be placed in alternative locations such as Channel
Mappings or Metadata columns where it will be much
faster and easier to troubleshoot with.

The settings for the encryption algorithm used, key length,
and hashing protocol used for the one-way hash can all be
configured and set through the mirth.properties file, but by
default these settings are not present and must be added
and the service restarted to take effect. In the image below,
these settings have been configured to:

1. Use the AES encryption protocol.

2. Use a key length of 256 (Maximum for AES)

3. Encrypt anything exported from Mirth such as Mirth
Connect server configuration backups, channels, code
templates, transformers, and filters.

4. Use the MD5 hashing algorithm for one-way hashing.

5. Use the BouncyCastleProvider as the security provider
to use for all encryption and hashing. This is the
standard security provider used by Mirth.

Securing Interfaces in
Mirth Connect
While many organizations are concerned with ensuring
end-to-end transport of messages between interface
engines or other applications are secure, it is just as
paramount that any messages or message logs stored
by the interface engine are just as secure. For Mirth,
many of these encryption or storage settings are
controlled on a per Channel basis rather than on
a global interface engine-wide one.

Figure 2.2: The event viewer as seen in the Mirth Connect application.
Seen at the top right as indicated by the number 1, various logs for
individual user actions are shows in a dashboard list. At the middle-right
near the number 2, it is possible to filter these down to a specific user
and/or server.

Figure 3.1: Checking the box highlighted in this Channel’s summary page
will encrypt the message content it stores for it in the logs.

6

Best Practices and Vulnerabilities of Mirth Connect

As far as configuration goes, Mirth has a local Java
truststore (certificate store essentially) where it will use
the CAs configured within to determine whether or not a
remote destination is trustworthy or not. Depending on the
version of Mirth being configured, it is important to note
that certificate settings may be handled differently. Prior
to 3.1, certificates were configured globally for every SSL
connector (so the same Java truststore was automatically
used for each connector enabled to use SSL). After 3.1,
the connector settings for the SSL manager were all taken
out of a centralized area and must be configured on a per
channel basis.

For example, for three channels that all use connectors
enabled with SSL, prior to 3.1 they would all use the same
Java truststore by default. After 3.1, they can use the same
truststore, but each channel must be configured to use
it manually.

SSL Tunnels
SSL tunnels can also be configured for the Mirth appliance
in the event that an SSL connector will not suffice for TCP/
IP based traffic or the receiving/sending connector is not
supported by the SSL manager natively. SSL tunnels are
defined by whether the traffic is inbound or outbound, a
receiving port and a sending port (one encrypted and one
unencrypted, depending on the direction of the traffic),
and the certificates presented by the receiving host.

SSL Manager (Connectors)
Aside from the certificate presented by the Mirth
server, there is also the capability to configure specific
channel types to send/receive traffic using SSL/TLS.
Currently the connectors available for configuring with
the SSL manager are the TCP/IP based connectors;
specifically these are the HTTP, Web Services, and File
(FTP) connectors. These allow the channels to use the
endpoint’s SSL certificate to encrypt the traffic with that
certificates public key before being sent, and only agents
with the private key (typically the destination only) to
decrypt the traffic.

Figure 3.2: Encryption settings for Mirth.

Figure 3.3: Shows the SSL manager’s two main areas; the top is where
CAs are configured with Mirth for sending SSL and the bottom shows
where SSL certificates can be imported for listening connectors using
SSL whom need to send securely to them.

SSL tunnels can also be configured
for the Mirth appliance in the event
that an SSL connector will not
suffice for TCP/IP based traffic
or the receiving/sending connector
is not supported by the SSL
manager natively.

"

"

7

Best Practices and Vulnerabilities of Mirth Connect

Encrypting Message Content Sent from Mirth
Message traffic sent over SSL to or from Mirth is encrypted
as a whole, but were someone to gain access to the private
key or be able to intercept the traffic before it passed
through an SSL tunnel, the messages would be viewable
in plaintext. For example, even if a channel were to send
by way of SSL to a remote endpoint, if the traffic itself
were decrypted the messages would be human-readable.
Another additional security option to overcome this would
be to encrypt both the traffic via SSL and the message
content itself so that even if the SSL traffic were
decrypted, the decrypted traffic would only reveal
encrypted message content.

Aside from encrypting the traffic over which the message
itself is passing through, Mirth has no capability as of 3.2
for native encryption of messages and this capability must
be filled in via third party library or custom programming
implemented both in Mirth and the remote interface or
application. We have helped implement this for one client
for writing encrypted files for temporary hosting/storage
where several Federal standards require that data at rest
be encrypted to approved secure cryptographic standards.
Thankfully, Mirth supports the loading of third-party
programming libraries and scripts by way this type of
feature can be implemented easily and effectively.

Conclusion
Mirth is a great product for use in Healthcare
interoperability and supports a great variety and
flexibility of protocols and methods over which to send
data, but does require a great deal of configuration to make
it fully secure and compliant with Federal requirements.

8

Best Practices and Vulnerabilities of Mirth Connect

